A genomic and expression compendium of the expanded PEBP gene family from maize.
نویسندگان
چکیده
The phosphatidylethanolamine-binding proteins (PEBPs) represent an ancient protein family found across the biosphere. In animals they are known to act as kinase and serine protease inhibitors controlling cell growth and differentiation. In plants the most extensively studied PEBP genes, the Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) genes, function, respectively, as a promoter and a repressor of the floral transition. Twenty-five maize (Zea mays) genes that encode PEBP-like proteins, likely the entire gene family, were identified and named Zea mays CENTRORADIALIS (ZCN), after the first described plant PEBP gene from Antirrhinum. The maize family is expanded relative to eudicots (typically six to eight genes) and rice (Oryza sativa; 19 genes). Genomic structures, map locations, and syntenous relationships with rice were determined for 24 of the maize ZCN genes. Phylogenetic analysis assigned the maize ZCN proteins to three major subfamilies: TFL1-like (six members), MOTHER OF FT AND TFL1-like (three), and FT-like (15). Expression analysis demonstrated transcription for at least 21 ZCN genes, many with developmentally specific patterns and some having alternatively spliced transcripts. Expression patterns and protein structural analysis identified maize candidates likely having conserved gene function of TFL1. Expression patterns and interaction of the ZCN8 protein with the floral activator DLF1 in the yeast (Saccharomyces cerevisiae) two-hybrid assay strongly supports that ZCN8 plays an orthologous FT function in maize. The expression of other ZCN genes in roots, kernels, and flowers implies their involvement in diverse developmental processes.
منابع مشابه
Bioinformatic and empirical analysis of a gene encoding serine/threonine protein kinase regulated in response to chemical and biological fertilizers in two maize (Zea mays L.) cultivars
Molecular structure of a gene, ZmSTPK1, encoding a serine/threonine protein kinase in maize was analyzed by bioinformatic tool and its expression pattern was studied under chemical biological fertilizers. Bioinformatic analysis cleared that ZmSTPK1 is located on chromosome 10, from position 141015332 to 141017582. The full genomic sequence of the gene is 2251 bp in length and includes 2 exons. ...
متن کاملCloning, Overexpression and in vitro Antifungal Activity of Zea Mays PR10 Protein
Background: Plants have various defense mechanisms such as production of antimicrobial peptides, particularly pathogenesis related proteins (PR proteins). PR10 family is an essential member of this group, with antifungal, antibacterial and antiviral activities.Objective: The goal of this study is to assess the antifungal activity of maize PR10 against some of fungal phytopathogens.M...
متن کاملAdipose Stem Cells as a Feeder Layer Reduce Apoptosis and p53 Gene Expression of Human Expanded Hematopoietic Stem Cells Derived from Cord Blood
Introduction: Human hematopoietic stem cells (hHSCs) have been used for transplantation in hematologic failures. Because the number of hHSCs per cord blood unit is limited, the expansion of these cells is important for clinical application. It has been reported that cytokines and feeder layer provide a perspective to in vitro expansion of hHSCs. In this regard, cord blood CD34+ cells ex...
متن کاملCharacterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.)
Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indica...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 146 1 شماره
صفحات -
تاریخ انتشار 2008